ÌðÐÄÊÓƵapp

Jump to main content

Aaron Apawu

Aaron Apawu

Associate Professor

Contact Information

Phone
970-351-1282
Fax
970-351-2533
Mailing Address
University of Northern Colorado

Campus Box 98
Greeley, CO 80639

Education

Post-Doc (Auditory Sci./Anatomy & Cell Bio) – Wayne State University School of Medicine, Detroit
Ph.D. (Analytical Chemistry) – Wayne State University, Detroit MI
M.S. (Analytical Chemistry) – East Tennessee State University, Johnson City, TN
B.S. (Chemistry) – University of Cape Coast, Ghana  

Research/Areas of Interest

Brain cells communicate through signaling molecules across synapses to execute variety of tasks. This communication can be disrupted by several environmental contaminants including loud noise, illicit drugs and industrial solvents frequently encountered through occupational exposures or abused as inhalants. The overarching goal of our lab is to use Analytical Chemistry and complementary tools to gain a comprehensive understanding of the interactions of these external contaminants on the brain chemistry. This research goal is achieved in the following research areas:

Combining analytical, molecular-based, and imaging tools to delineate the neurochemical bases for inhalant abuse

The prevalence of inhalant abuse among the youth is a source of great concern. These volatile solvents that are frequently misused have been reported to elicit  devastating effects on mental health and hence the call for in-depth understanding into their pharmacodynamics and rewarding properties to lay the foundation for effective therapeutic strategies. While existing body of evidence implicates the mesolimbic dopamine pathway in the action of inhalant like toluene, the underlying neurochemical mechanisms still remain elusive. Our lab optimizes analytical tools, molecular based assays, and imaging modalities to gain a comprehensive understanding of the impact of inhalants on the mesolimbic dopamine system and to delineate the neural bases for inhalant abuse. Our work involves the use of rodent models, slice and in vivofast scan cyclic voltammetry, microelectrode fabrication & modifications, HPLC, pharmacological manipulations, and exploring evidence for oxidative damage.

Expanding the utility of electrochemistry to study the role of  monoamine neurotransmitters in the central auditory pathways

It’s becoming increasingly apparent that monoamine neurotransmitters such as dopamine and serotonin are playing a critical role in auditory functions due to their significant presence in central auditory pathways. Nonetheless, how the signaling of these neurotransmitters influences hearing or is impacted during acoustic trauma is equivocal. Our work harnesses the superior temporal resolution of fast scan cyclic voltammetry together with auditory brainstem responses to define the origin and function of dopaminergic and serotonergic inputs in the central auditory pathways and their possible disruption following acoustic trauma.

Exploring the combined effect of chemical and noise exposures

Industrial workers are frequently exposed to both organic solvents and loud noise that are hazardous to their health. While existing evidence suggests that workers who are frequently exposed to industrial solvent risk developing auditory and vestibular dysfunctions,the neural substrates that mediate this effect of industrial solvent on the auditory/vestibular systems is unclear. Our lab seeks to mechanistically elucidate the neural substrates in the auditory/vestibular pathways that are altered in frequent exposures to organic solvent and examines the synergistic effects of chemical and noise exposures on the central auditory/vestibular systems.This research will provide insights that may influencing OSHA guidelines for occupational exposures to industrial solvents and noise.

Publications/Creative Works