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A crease characterized by strains ϵ ∼ 1 within a volume
V ∼ (0.3 micron)3 would be a strongly athermal object; in
polyacrylamide with shear modulus G ∼ 1 kPa, its elastic
energy would be of order GV ϵ2 ∼ 104kBT . Here, however,
we consider the possibility that compression-induced, non-
affine fluctuations can act as an “effective temperature,”
endowing a micro-crease with an “effective entropy”. This
viewpoint leads to a novel mechanism for the formation of
micro-creases that can be regarded as precursors to macro-
creases. Furthermore, the essential features of our pro-
posed micro-creasing mechanism are amenable to simple
analytic calculations, by virtue of a domain decomposition
that relegates nonlinear elasticity to small, energetically
inconsequential regions analogous to vortex cores.

The main content of this letter is a new quasi-particle
framework for shear stress focusing in soft solids, assum-
ing planar geometry and neglecting surface tension. We
consider the formation of micro-creases from within this
framework, finding evidence that i) creasing onset maps
to the Kosterlitz-Thouless (KT) transition [26], ii) non-
linear deformations can be decoupled from linear, and iii)
compression-induced shear strain fluctuations set the fun-
damental, microscopic lengthscale in the problem. Our
theory makes contact with experimental results on crit-
ical strain and crease surface profiles. In particular, we
obtain a universal critical compressive strain ϵc ≈ 30%
above which creases emerge. Finally, the theory points
to a set of minimal physical ingredients for creasing,
and suggests a possible unification with ridging (forma-
tion of localized surface protrusions) [27], and dimple
crystallization [28,29].

Our point of departure from prior work is to consider
a distinct regime of zero-length creases, qualitatively sim-
ilar to those observed in [6–8], immediately upon nucle-
ation, and those in [16], as the critical point is approached
from above. Deformations reminiscent of these zero-length
creases also appear in a very different continuum elastic
context, namely the shear lag model of composite materi-
als science and engineering [30,31]. In this model, which
will become foundational to our theory of micro-creasing,
one assumes that shear coupling is supported at the in-
terface between a low-dimensional reinforcing phase (i.e.,
1d fibers or 2d slabs) and a surrounding 3d matrix phase.
Next, an approximation is made that the transfer of axial
loads between the two components is accomplished en-
tirely via tension or compression in the reinforcing phase,
and pure shear in the matrix. Axial loads refer to external
or internal forces (such as those arising from differential
growth of the two components) acting parallel to a long
axis of the reinforcing phase. In the case of a fiber-matrix
composite, the model predicts that matrix shear stress and
strain fall off as 1/r, where r is the perpendicular distance
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d〉. This triangular waveform represents an ideal-

ized surface roughness profile arising from the non-affine
displacements. We further assume conservation of the area
of the free surface, i.e., as the slab is compressed, the sur-
face concertinas between stress concentrators. (Qualita-
tively similar roughening behavior has been observed for
polycrystalline metal under compressive plane strain [39].)
Setting the lattice constant s equal to the largest length-
scale over which shear strain is constant in this model,
namely λd/2, , we then find ϵc = 1−(1+K−1

c )−1/2 = 38%
(mean-field theory) and = 30% (renormalization group),
which bracket 33%.

Ghost fibers in the post-transitional regime. –
Two important features of creasing experiments remain

to be explained by our quasi-particle theory: i) that only
creases and not anticreases appear to be seen, and ii) that
zero-length creases smoothly become finite-length creases.
In this section we consider i), and in the next section we
will consider ii).

The KT transition does not involve (or at least, does not
require) self-contact in the core region. Yet self-contact is
generically observed [7,8,14,16,22]. We propose that self-
contact ensues at strain ϵsc > ϵc, and point out that it
can only be available to creases, because a self-contacting
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and vice versa (see, e.g., ref. [47]). In the electrostatic
picture, the essential difference between surface and in-
terfacial creasing is in the behavior of the charge density
2πR tan(θ


