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II. MINIMAL COUPLING FORMALISM

Consider a quantum particle with wave function �(r, t ) =
�1(r, t ) + i�2(r, t ), �1 and �2 being real, that satisfies
the time-dependent Schrödinger equation ih̄ ∂t� = ˆ
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Case 1: Spatial derivatives of P are negligible, and ML/B
and PL2/B are both � 1 so that we may retain terms only
to linear order in these quantities in the nondimensionalized
equations of motion (lengths measured in units of L, time in
units of L2√ρ/B). On the quantum side, this case corresponds
to the semiclassical approximation with weak potentials. On
the elastic side, it corresponds to small terminal twist angle
φ = (1 + ν)ML/B where ν is Poisson’s ratio, and P well
below the Euler buckling threshold π2B/L2. Equations (6)
reduce to

−ρ�̈1 = B� ′′′′
1 + M� ′′′

2 + P� ′′
1 , (7a)

−ρ�̈2 = B� ′′′′
2 − M� ′′′

1 + P� ′′
2 . (7b)

To linear order in ML/B, the twist-induced tension contri-
bution to P is not accounted for, and all elastic parameters
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not in a thermal equilibrium sense since here the total en-
ergy (found by changing the signs of the last three terms
in Eq. (12) and integrating over x) is not also periodic
in φ.

Letting Eqs. (14) describe the periodic straight rod and
setting M = P = 0 yields a set of de Broglie relations: px =∫

dx g = h̄kn



T. A. ENGSTROM PHYSICAL REVIEW E 107, 065005 (2023)

more exotic physics, such as the Zak phase [32], but in a
classical setting.
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APPENDIX A: ENERGY-MOMENTUM TENSOR

The energy-momentum tensor, also known as the stress-
energy tensor, is usually derived assuming the Lagrangian
density depends on field variable derivatives only up to
first order. Here, we derive it (in the notation of Ref. [33])
for a Lagrangian density, such as Eq. (12), that depends
on field variable u(x) derivatives up to second order: L =
L(u,∇u,∇∇u, x). The Euler-Lagrange equations are

∂L
∂ui

− ∂α

∂L
∂ui,α

+ ∂αβ

∂L
∂ui,αβ

= 0. (A1)

Under an ε-family of transformations of the field variables,
and writing δ ≡ d/dε at ε = 0,

δL = ∂L
∂ui

δui + ∂L
∂ui,α

δui,α + ∂L
∂ui,αβ

δui,αβ . (A2)

Combining the previous two equations yields

δL = ∂α

[{
∂L

∂ui,α
− ∂β

(
∂L

∂ui,αβ
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